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What is Ada and SPARK?

Ada is a state-of-the art programming language that development teams worldwide
are using for critical software: from microkernels and small-footprint,
real-time embedded systems to large-scale enterprise applications, and
everything in between.

SPARK is a formally analyzable subset of Ada — and a toolset that brings
mathematics-based confidence to software verification.
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Check out the interactive courses and labs listed on the left side to learn
more about Ada and SPARK.
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Download the contents of the entire website as an e-book for offline
reading. Following formats are available: PDF and EPUB.
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Professional Ada Training

Get professional Ada training from
Adacore.





Experience has shown that Ada is an extremely learnable language and that
programmers with basic knowledge in other languages can quickly get up to
speed with Ada. For programmers who already have some Ada experience,
AdaCore offers advanced courses in Ada and GNAT Pro/GNAT Studio designed to
help developers get the most out of the technology.





GNAT Academic Program

Teachers and graduate students who are interested in teaching or using Ada or SPARK can take
advantage of AdaCore's GNAT Academic Program (GAP).





GAP's primary objective is to help put Ada and SPARK at the forefront of university study by
building a community of academic professionals. GAP members receive a comprehensive
toolset and professional support package specifically designed to provide the tools
needed to teach and use Ada and SPARK in an academic setting. Best of all, AdaCore
provides the GAP Package to eligible members at no cost.
Register for membership
today and join over 100 member universities in 35 countries currently teaching
Ada and SPARK using GAP.
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