

 	About

Courses

	Introduction to Ada	Introduction	History
	Ada today
	Philosophy
	SPARK

	Imperative Language	Hello world
	Imperative language - If/Then/Else
	Imperative language - Loops	For loops
	Bare loops
	While loops

	Imperative language - Case statement
	Imperative language - Declarative regions
	Imperative language - conditional expressions	If expressions
	Case expressions

	Subprograms	Subprograms	Subprogram calls
	Nested subprograms
	Function calls

	Parameter modes
	Subprogram calls	In parameters
	In out parameters
	Out parameters
	Forward declaration of subprograms

	Renaming

	Modular Programming	Packages
	Using a package
	Package body
	Child packages	Child of a child package
	Multiple children
	Visibility

	Renaming

	Strongly Typed Language	What is a type?
	Integers	Operational semantics

	Unsigned types
	Enumerations
	Floating-point types	Basic properties
	Precision of floating-point types
	Range of floating-point types

	Strong typing
	Derived types
	Subtypes	Subtypes as type aliases

	Records	Record type declaration
	Aggregates
	Component selection
	Renaming

	Arrays	Array type declaration
	Indexing
	Simpler array declarations
	Range attribute
	Unconstrained arrays
	Predefined array type: String
	Restrictions
	Returning unconstrained arrays
	Declaring arrays (2)
	Array slices
	Renaming

	More About Types	Aggregates: A primer
	Overloading and qualified expressions
	Character types

	Access Types	Overview
	Allocation (by type)
	Dereferencing
	Other features
	Mutually recursive types

	More About Records	Dynamically sized record types
	Records with discriminant
	Variant records

	Fixed-Point Types	Decimal fixed-point types
	Ordinary fixed-point types

	Privacy	Basic encapsulation
	Abstract data types
	Limited types
	Child packages & privacy

	Generics	Introduction
	Formal type declaration
	Formal object declaration
	Generic body definition
	Generic instantiation
	Generic packages
	Formal subprograms
	Example: I/O instances
	Example: ADTs
	Example: Swap
	Example: Reversing
	Example: Test application

	Exceptions	Exception declaration
	Raising an exception
	Handling an exception
	Predefined exceptions

	Tasking	Tasks	Simple task
	Simple synchronization
	Delay
	Synchronization: rendezvous
	Select loop
	Cycling tasks

	Protected objects	Simple object
	Entries

	Task and protected types	Task types
	Protected types

	Design by contracts	Pre- and postconditions
	Predicates
	Type invariants

	Interfacing With C	Multi-language project
	Type convention
	Foreign subprograms	Calling C subprograms in Ada
	Calling Ada subprograms in C

	Foreign variables	Using C global variables in Ada
	Using Ada variables in C

	Generating bindings	Adapting bindings

	Object Oriented Programming	Derived types
	Tagged types
	Classwide types
	Dispatching operations
	Dot notation
	Private & Limited
	Classwide access types

	Standard Library: Containers	Vectors	Instantiation
	Initialization
	Appending and prepending elements
	Accessing first and last elements
	Iterating
	Finding and changing elements
	Inserting elements
	Removing elements
	Other Operations

	Sets	Initialization and iteration
	Operations on elements
	Other Operations

	Indefinite maps	Hashed maps
	Ordered maps
	Complexity

	Standard Library: Dates & Times	Date and time handling	Delaying using date

	Real-time	Benchmarking

	Standard Library: Strings	String operations
	Limitation of fixed-length strings
	Bounded strings
	Unbounded strings

	Standard Library: Files & Streams	Text I/O
	Sequential I/O
	Direct I/O
	Stream I/O

	Standard Library: Numerics	Elementary Functions
	Random Number Generation
	Complex Types
	Vector and Matrix Manipulation

	Appendices	Appendix A: Generic Formal Types	Indefinite version

	Appendix B: Containers

	Advanced Journey With Ada	Data types	Types	Scalar Types
	Enumerations
	Definite and Indefinite Subtypes
	Incomplete types
	Mutually dependent types
	Type view
	Type conversion
	Qualified Expressions
	Default initial values
	Deferred Constants
	User-defined literals

	Types and Representation	Enumeration Representation Clauses
	Data Representation
	Record Representation and storage clauses
	Changing Data Representation
	Valid Attribute
	Unchecked Union
	Shared variable control
	Addresses
	Discarding names

	Aggregates	Container Aggregates
	Record aggregates
	Null records
	Full coverage rules for Aggregates
	Array aggregates
	Extension Aggregates
	Delta Aggregates

	Arrays	Unconstrained Arrays
	Multidimensional Arrays

	Strings	Wide and Wide-Wide Strings
	String Encoding
	Image attribute
	Put_Image aspect
	Universal text buffer

	Numerics	Modular Types
	Numeric Literals
	Floating-Point Types
	Fixed-Point Types
	Big Numbers

	Control Flow	Expressions	Expressions: Definition
	Conditional Expressions
	Quantified Expressions
	Declare Expressions
	Reduction Expressions

	Statements	Simple and Compound Statements
	Labels
	Exit loop statement
	If, case and loop statements
	Block Statements
	Extended return statement

	Subprograms	Parameter Modes and Associations
	Operators
	Expression functions
	Overloading
	Operator Overloading
	Operator Overriding
	Nonreturning procedures
	Inline subprograms
	Null Procedures

	Exceptions	Asserts
	Assertion policies
	Checks and exceptions
	Ada.Exceptions package
	Exception renaming
	Out and Uninitialized
	Suppressing checks

	Modular programming	Packages	Package renaming
	Private packages
	Private with clauses
	Limited Visibility
	Visibility
	Use type clause
	Use clauses and naming conflicts

	Subprograms and Modularity	Private subprograms

	Resource Management	Access Types	Access types: Terminology
	Access types: Allocation
	Discriminants as Access Values
	Parameters as Access Values
	Self-reference
	Dereferencing
	Ragged arrays
	Aliasing
	Accessibility Levels and Rules: An Introduction
	Unchecked Access
	Unchecked Deallocation
	Null & Not Null Access
	Design strategies for access types
	Access to subprograms
	Accessibility Rules and Access-To-Subprograms
	Access and Address

	Anonymous Access Types	Named and Anonymous Access Types
	Anonymous Access-To-Object Types
	Access discriminants
	Self-reference
	Mutually dependent types using anonymous access types
	Access parameters
	User-Defined References
	Anonymous Access Types and Accessibility Rules
	Anonymous Access-To-Subprograms
	Accessibility Rules and Anonymous Access-To-Subprograms

	Introduction to SPARK	Overview	What is it?
	What do the tools do?
	Key Tools
	A trivial example
	The Programming Language
	Limitations	No side-effects in expressions
	No aliasing of names

	Designating SPARK Code
	Code Examples / Pitfalls	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Flow Analysis	What does flow analysis do?
	Errors Detected	Uninitialized Variables
	Ineffective Statements
	Incorrect Parameter Mode

	Additional Verifications	Global Contracts
	Depends Contracts

	Shortcomings	Modularity
	Composite Types
	Value Dependency
	Contract Computation

	Code Examples / Pitfalls	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Proof of Program Integrity	Runtime Errors
	Modularity	Exceptions

	Contracts	Executable Semantics
	Additional Assertions and Contracts

	Debugging Failed Proof Attempts	Debugging Errors in Code or Specification
	Debugging Cases where more Information is Required
	Debugging Prover Limitations

	Code Examples / Pitfalls	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	State Abstraction	What's an Abstraction?
	Why is Abstraction Useful?
	Abstraction of a Package's State
	Declaring a State Abstraction
	Refining an Abstract State
	Representing Private Variables
	Additional State	Nested Packages
	Constants that Depend on Variables

	Subprogram Contracts	Global and Depends
	Preconditions and Postconditions

	Initialization of Local Variables
	Code Examples / Pitfalls	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Proof of Functional Correctness	Beyond Program Integrity
	Advanced Contracts	Ghost Code
	Ghost Functions
	Global Ghost Variables

	Guide Proof	Local Ghost Variables
	Ghost Procedures
	Handling of Loops
	Loop Invariants

	Code Examples / Pitfalls	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Example #7
	Example #8
	Example #9
	Example #10

	Introduction to Embedded Systems Programming	Introduction	So, what will we actually cover?
	Definitions
	Down To The Bare Metal
	The Ada Drivers Library

	Low Level Programming	Separation Principle
	Guaranteed Level of Support
	Querying Implementation Limits and Characteristics
	Querying Representation Choices
	Specifying Representation
	Unchecked Programming
	Data Validity

	Multi-Language Development	General Interfacing	Aspect/Pragma Convention
	Aspect/Pragma Import and Export
	Aspect/Pragma External_Name and Link_Name
	Package Interfaces

	Language-Specific Interfacing	Package Interfaces.C
	Package Interfaces.C.Strings
	Package Interfaces.C.Pointers
	Package Interfaces.Fortran
	Machine Code Insertions (MCI)

	When Ada Is Not the Main Language

	Interacting with Devices	Non-Memory-Mapped Devices
	Memory-Mapped Devices
	Dynamic Address Conversion
	Address Arithmetic

	General-Purpose Code Generators	Aspect Independent
	Aspect Volatile
	Aspect Atomic
	Aspect Full_Access_Only

	Handling Interrupts	Background
	Language-Defined Interrupt Model
	Interrupt Handlers
	Interrupt Management
	Associating Handlers With Interrupts
	Interrupt Priorities
	Common Design Idioms	Parameterizing Handlers
	Multi-Level Handlers

	Final Points

	Conclusion

	What's New in Ada 2022	Introduction	References

	'Image attribute for any type	'Image attribute for a value
	'Image attribute for any type
	References

	Redefining the 'Image attribute	What's the Root_Buffer_Type?
	Outdated draft implementation
	References

	User-Defined Literals	Turn Ada into JavaScript
	References

	Advanced Array Aggregates	Square brackets
	Iterated Component Association
	References

	Container Aggregates	References

	Delta Aggregates	Delta aggregate for records
	Delta aggregate for arrays
	References

	Target Name Symbol (@)	Alternatives
	References

	Enumeration representation	Literal positions
	Representation values
	Before Ada 2022
	References

	Big Numbers	Big Integers
	Tiny RSA implementation
	Big Reals
	References

	Interfacing C variadic functions	References

	Ada for the C++ or Java Developer	Preface
	Basics
	Compilation Unit Structure
	Statements, Declarations, and Control Structures	Statements and Declarations
	Conditions
	Loops

	Type System	Strong Typing
	Language-Defined Types
	Application-Defined Types
	Type Ranges
	Generalized Type Contracts: Subtype Predicates
	Attributes
	Arrays and Strings
	Heterogeneous Data Structures
	Pointers

	Functions and Procedures	General Form
	Overloading
	Subprogram Contracts

	Packages	Declaration Protection
	Hierarchical Packages
	Using Entities from Packages

	Classes and Object Oriented Programming	Primitive Subprograms
	Derivation and Dynamic Dispatch
	Constructors and Destructors
	Encapsulation
	Abstract Types and Interfaces
	Invariants

	Generics	Generic Subprograms
	Generic Packages
	Generic Parameters

	Exceptions	Standard Exceptions
	Custom Exceptions

	Concurrency	Tasks
	Rendezvous
	Selective Rendezvous
	Protected Objects

	Low Level Programming	Representation Clauses
	Embedded Assembly Code
	Interfacing with C

	Conclusion
	References

	Ada for the Embedded C Developer	Introduction	So, what is this Ada thing anyway?
	Ada — The Technical Details

	The C Developer's Perspective	What we mean by Embedded Software
	The GNAT Toolchain
	The GNAT Toolchain for Embedded Targets
	Hello World in Ada
	The Ada Syntax
	Compilation Unit Structure
	Packages	Declaration Protection
	Hierarchical Packages
	Using Entities from Packages

	Statements and Declarations
	Conditions
	Loops
	Type System	Strong Typing
	Language-Defined Types
	Application-Defined Types
	Type Ranges
	Unsigned And Modular Types
	Attributes
	Arrays and Strings
	Heterogeneous Data Structures
	Pointers

	Functions and Procedures	General Form
	Overloading
	Aspects

	Concurrency and Real-Time	Understanding the various options
	Tasks
	Rendezvous
	Selective Rendezvous
	Protected Objects
	Ravenscar

	Writing Ada on Embedded Systems	Understanding the Ada Run-Time
	Low Level Programming	Representation Clauses
	Embedded Assembly Code

	Interrupt Handling
	Dealing with Absence of FPU with Fixed Point
	Volatile and Atomic data	Volatile
	Atomic

	Interfacing with Devices	Size aspect and attribute
	Register overlays
	Data streams

	ARM and svd2ada

	Enhancing Verification with SPARK and Ada	Understanding Exceptions and Dynamic Checks
	Understanding Dynamic Checks versus Formal Proof
	Initialization and Correct Data Flow
	Contract-Based Programming
	Replacing Defensive Code
	Proving Absence of Run-Time Errors
	Proving Abstract Properties
	Final Comments

	C to Ada Translation Patterns	Naming conventions and casing considerations
	Manually interfacing C and Ada
	Building and Debugging mixed language code
	Automatic interfacing
	Using Arrays in C interfaces
	By-value vs. by-reference types
	Naming and prefixes
	Pointers
	Bitwise Operations
	Mapping Structures to Bit-Fields	Overlays vs. Unchecked Conversions

	Handling Variability and Re-usability	Understanding static and dynamic variability
	Handling variability & reusability statically	Genericity
	Simple derivation
	Configuration pragma files
	Configuration packages

	Handling variability & reusability dynamically	Records with discriminants
	Variant records
	Object orientation
	Pointer to subprograms

	Design by components using dynamic libraries

	Performance Considerations	Overall expectations
	Switches and optimizations	Optimizations levels
	Inlining

	Checks and assertions	Checks
	Assertions

	Dynamic vs. static structures
	Pointers vs. data copies	Function returns

	Argumentation and Business Perspectives	What's the expected ROI of a C to Ada transition?
	Who is using Ada today?
	What is the future of the Ada technology?
	Is the Ada toolset complete?
	Where can I find Ada or SPARK developers?
	How to introduce Ada and SPARK in an existing code base?

	Conclusion
	Hands-On: Object-Oriented Programming	System Overview
	Non Object-Oriented Approach	Starting point in C
	Initial translation to Ada
	Improved Ada implementation

	First Object-Oriented Approach	Interfaces
	Base type
	Derived types
	Subprograms from parent
	Type AB
	Updated source-code

	Further Improvements	Dispatching calls
	Dynamic allocation
	Limited controlled types
	Updated source-code

	SPARK Ada for the MISRA C Developer	Preface
	Enforcing Basic Program Consistency	Taming Text-Based Inclusion
	Hardening Link-Time Checking
	Going Towards Encapsulation

	Enforcing Basic Syntactic Guarantees	Distinguishing Code and Comments
	Specially Handling Function Parameters and Result	Handling the Result of Function Calls
	Handling Function Parameters

	Ensuring Control Structures Are Not Abused	Preventing the Semicolon Mistake
	Avoiding Complex Switch Statements
	Avoiding Complex Loops
	Avoiding the Dangling Else Issue

	Enforcing Strong Typing	Enforcing Strong Typing for Pointers	Pointers Are Not Addresses
	Pointers Are Not References
	Pointers Are Not Arrays
	Pointers Should Be Typed

	Enforcing Strong Typing for Scalars	Restricting Operations on Types
	Restricting Explicit Conversions
	Restricting Implicit Conversions

	Initializing Data Before Use	Detecting Reads of Uninitialized Data
	Detecting Partial or Redundant Initialization of Arrays and Structures

	Controlling Side Effects	Preventing Undefined Behavior
	Reducing Programmer Confusion
	Side Effects and SPARK

	Detecting Undefined Behavior	Preventing Undefined Behavior in SPARK
	Proof of Absence of Run-Time Errors in SPARK

	Detecting Unreachable Code and Dead Code
	Conclusion
	References	About MISRA C
	About SPARK
	About MISRA C and SPARK

	Introduction to the GNAT Toolchain	GNAT Toolchain Basics	Basic commands
	Compiler warnings	-gnatwa switch and warning suppression
	Style checking

	GPRbuild	Basic commands
	Project files	Basic structure
	Customization

	Project dependencies	Simple dependency
	Dependencies to dynamic libraries

	Configuration pragma files
	Configuration packages

	GNAT Studio	Start-up	Windows
	Linux

	Creating projects
	Building
	Debugging	Debug information
	Improving main application
	Debugging the application

	Formal verification

	GNAT Tools	gnatchop
	gnatprep
	gnatmem
	gnatmetric
	gnatdoc
	gnatpp
	gnatstub

Labs

	Introduction to Ada: Laboratories	Imperative Language	Hello World
	Greetings
	Positive Or Negative
	Numbers

	Subprograms	Subtract procedure
	Subtract function
	Equality function
	States
	States #2
	States #3
	States #4

	Modular Programming	Months
	Operations

	Strongly Typed Language	Colors
	Integers
	Temperatures

	Records	Directions
	Colors
	Inventory

	Arrays	Constrained Array
	Colors: Lookup-Table
	Unconstrained Array
	Product info
	String_10
	List of Names

	More About Types	Aggregate Initialization
	Versioning
	Simple todo list
	Price list

	Privacy	Directions
	Limited Strings
	Bonus exercise	Colors
	List of Names
	Price List

	Generics	Display Array
	Average of Array of Float
	Average of Array of Any Type
	Generic list

	Exceptions	Uninitialized Value
	Numerical Exception
	Re-raising Exceptions

	Tasking	Display Service
	Event Manager
	Generic Protected Queue

	Design by contracts	Price Range
	Pythagorean Theorem: Predicate
	Pythagorean Theorem: Precondition
	Pythagorean Theorem: Postcondition
	Pythagorean Theorem: Type Invariant
	Primary Color

	Object Oriented Programming	Simple type extension
	Online Store

	Standard Library: Containers	Simple todo list
	List of unique integers

	Standard Library: Dates & Times	Holocene calendar
	List of events

	Standard Library: Strings	Concatenation
	List of events

	Standard Library: Numerics	Decibel Factor
	Root-Mean-Square
	Rotation

	Solutions	Imperative Language	Hello World
	Greetings
	Positive Or Negative
	Numbers

	Subprograms	Subtract Procedure
	Subtract Function
	Equality function
	States
	States #2
	States #3
	States #4

	Modular Programming	Months
	Operations

	Strongly typed language	Colors
	Integers
	Temperatures

	Records	Directions
	Colors
	Inventory

	Arrays	Constrained Array
	Colors: Lookup-Table
	Unconstrained Array
	Product info
	String_10
	List of Names

	More About Types	Aggregate Initialization
	Versioning
	Simple todo list
	Price list

	Privacy	Directions
	Limited Strings

	Generics	Display Array
	Average of Array of Float
	Average of Array of Any Type
	Generic list

	Exceptions	Uninitialized Value
	Numerical Exception
	Re-raising Exceptions

	Tasking	Display Service
	Event Manager
	Generic Protected Queue

	Design by contracts	Price Range
	Pythagorean Theorem: Predicate
	Pythagorean Theorem: Precondition
	Pythagorean Theorem: Postcondition
	Pythagorean Theorem: Type Invariant
	Primary Colors

	Object-oriented programming	Simple type extension
	Online Store

	Standard library: Containers	Simple todo list
	List of unique integers

	Standard library: Dates & Times	Holocene calendar
	List of events

	Standard library: Strings	Concatenation
	List of events

	Standard library: Numerics	Decibel Factor
	Root-Mean-Square
	Rotation

	Bug Free Coding	Let's Build a Stack	Background
	Input Format
	Constraints
	Output Format
	Sample Input
	Sample Output

 learn.adacore.com

 	
	LEARN.ADACORE.COM
	

LEARN.ADACORE.COM

 Edit on GitHub

What is Ada and SPARK?

Ada is a state-of-the art programming language that development teams worldwide
are using for critical software: from microkernels and small-footprint,
real-time embedded systems to large-scale enterprise applications, and
everything in between.

SPARK is a formally analyzable subset of Ada — and a toolset that brings
mathematics-based confidence to software verification.

Try Ada Now:

with Ada.Text_IO; use Ada.Text_IO;

procedure Learn is

 subtype Alphabet is Character range 'A' .. 'Z';

begin

 Put_Line ("Learning Ada from " & Alphabet'First & " to " & Alphabet'Last);

end Learn;

 learn.adb

 Settings

 Use tabbed editor view

 Use the dark theme

 Switches

 -g

 -O0

 -gnata

 -gnatW8

 -gnatwa

 -gnatyg0-s

 -gnatyM50

 -gnatyM80

 -gnato

 -gnato0

 -gnato11

 -gnato21

 -gnato22

 -gnato23

 -gnateE

 -gnatX

 Reset

 Download

 Run

Check out the interactive courses and labs listed on the left side to learn
more about Ada and SPARK.

	About

Courses

	Introduction to Ada
	Advanced Journey With Ada
	Introduction to SPARK
	Introduction to Embedded Systems Programming
	What's New in Ada 2022
	Ada for the C++ or Java Developer
	Ada for the Embedded C Developer
	SPARK Ada for the MISRA C Developer
	Introduction to the GNAT Toolchain

Labs

	Introduction to Ada: Laboratories
	Bug Free Coding

E-books

Download the contents of the entire website as an e-book for offline
reading. Following formats are available: PDF and EPUB.

 PDF

 EPUB

 ZIP (source code)

Alternatively, download individual courses and laboratories as e-books:

 PDF

 EPUB

 PDF

 EPUB

 PDF

 EPUB

 PDF

 EPUB

 PDF

 EPUB

 PDF

 EPUB

 PDF

 EPUB

 PDF

 EPUB

 PDF

 EPUB

 PDF

 EPUB

Professional Ada Training

Get professional Ada training from
Adacore.

Experience has shown that Ada is an extremely learnable language and that
programmers with basic knowledge in other languages can quickly get up to
speed with Ada. For programmers who already have some Ada experience,
AdaCore offers advanced courses in Ada and GNAT Pro/GNAT Studio designed to
help developers get the most out of the technology.

GNAT Academic Program

Teachers and graduate students who are interested in teaching or using Ada or SPARK can take
advantage of AdaCore's GNAT Academic Program (GAP).

GAP's primary objective is to help put Ada and SPARK at the forefront of university study by
building a community of academic professionals. GAP members receive a comprehensive
toolset and professional support package specifically designed to provide the tools
needed to teach and use Ada and SPARK in an academic setting. Best of all, AdaCore
provides the GAP Package to eligible members at no cost.
Register for membership
today and join over 100 member universities in 35 countries currently teaching
Ada and SPARK using GAP.

 Next

© Copyright 2018 – 2024, AdaCore. All rights reserved.

 Legal
 |
 Privacy Policy
 |
 Report an Issue

